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Counterintuitively, Y. Kareev, I. Lieberman, and M. Lev (1997) found that a lower short-term memory
capacity benefits performance on a correlation detection task. They assumed that people with low
short-term memory capacity (low spans) perceived the correlations as more extreme because they relied
on smaller samples, which are known to exaggerate correlations. The authors consider, as an alternative
hypothesis, that low spans do not perceive exaggerated correlations but make simpler predictions.
Modeling both hypotheses in ACT-R demonstrates that simpler predictions impair performance if the
environment changes, whereas a more exaggerated perception of correlation is advantageous to detect a
change. Congruent with differences in the way participants make predictions, 2 experiments revealed a
low capacity advantage before the environment changes but a high capacity advantage afterward,
although this pattern of results surprisingly only existed for men.
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Nearly 50 years ago, Miller (1956) concluded that people can
consider about seven items or categories simultaneously (plus or
minus two). The premise of limited cognitive capacities is often
directly linked to its supposed negative consequences, such as
reasoning errors or poor cognitive performance (e.g., Johnson-
Laird, 1983; Kahneman, Slovic, & Tversky, 1982). But are limited
capacities merely a liability? There is growing evidence that they
can also be beneficial (for an overview, see Hertwig & Todd,
2003).

In the present article, we discuss the benefits of cognitive limits
for the detection of correlations, which were shown by Kareev and
colleagues (Kareev, 1995a, 1995b, 2000, 2004; Kareev, Lieber-
man, & Lev, 1997). They made the counterintuitive prediction that
limited capacities are beneficial in correlation detection because
they force people to rely on small samples. This prediction was
derived from the statistical fact that correlations tend to be over-
estimated in small samples, which was initially supported by
behavioral data. However, their theoretical account has been chal-
lenged recently because small samples also yield a higher risk of
false alarms (R. B. Anderson, Doherty, Berg, & Friedrich, 2005;

Juslin & Olsson, 2005). Furthermore, we review empirical evi-
dence that is in conflict with Kareev’s theoretical account. Because
of these challenges, our goal is to present an alternative explana-
tion for the findings by Kareev and colleagues that they interpreted
as supporting their theory. Our alternative explanation is drawn
from the probability learning literature, which is tested against
Kareev’s hypothesis. Before doing this, we describe the domain of
correlation detection and explain Kareev and colleagues’ argu-
ments and their challenges in more detail.

Limited Capacities and Correlation Detection:
The Small-Sample Hypothesis

Correlation detection (or, more generally, contingency assess-
ment) is considered to be an important component of adaptive
behavior and has been studied in a variety of domains and with a
variety of tasks (for reviews, see Alloy & Tabachnik, 1984; De
Houwer & Beckers, 2002). Most studies of contingency assess-
ment are concerned with contingencies between binary variables.
They can be described by a 2 � 2 contingency table (see Figure 1)
that shows the frequencies (or probabilities) of the presence or
absence of one variable (outcome, e.g., a disease), given the
presence or absence of another variable (input, e.g., a symptom).

The phi coefficient,1 a common measure to compute contingen-
cies between binary variables, is defined as

� � �ad � bc)/�(a � b)(c � d)(a � c)(b � d). (1)

Kareev (1995b) argued that people rely on samples from the
environment to assess correlations between, for example, two
dimensions of a set of objects. The size of these samples is
supposed to be bounded by short-term memory capacity. In a

1 If correlations are symmetrical (i.e., a – b � d – c) and marginal
distributions are equal (i.e., a � b � c � d), the phi coefficient leads to the
same nominal value as �P, defined as �P � a/(a � b) – c/(c � d).
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theoretical analysis, Kareev concluded that the use of small sample
sizes facilitates the early detection of correlations by amplifying
them. Specifically, both the median and the mode of the sampling
distribution exceed the population correlation, and the smaller the
sample, the more so. Building on the assumption that people’s
perception of correlation is the result of calculating the correlation
on the basis of a sample, Kareev assumed that consideration of a
small sample is more likely to result in a more extreme perception
of correlation. Because the samples people consider are smaller for
people with a lower short-term memory capacity (low spans) than
for those with a higher short-term memory capacity (high spans),
the argument goes, low spans should be more likely to perceive the
correlation as more extreme, and thereby detect it earlier.

Kareev and his colleagues provided experimental support for
this theoretical argument because low spans indeed performed
better on a correlation detection task (Kareev et al., 1997). The task
consisted of predicting, trial by trial, which of two possible sym-
bols (X or O) an envelope (which could be either red or green)
contained. The number of Xs and Os within the envelopes was
varied to yield correlations ranging from � � �.60 to � � .60. A
correlation here means that, for example, there are more Xs in red
envelopes and more Os in green envelopes. Detecting this corre-
lation helps people to increase their predictive performance. We
refer to this task as the envelope task. Kareev et al. (1997) con-
cluded that people with a lower short-term memory capacity, and
hence a smaller sample size to consider, “perceived the correlation
as more extreme and were more accurate in their predictions” (p.
278). We call this Kareev’s small-sample hypothesis of correlation
detection in the remainder of this article.

The phenomenon of a low capacity advantage in correlation
detection is particularly surprising, considering that short-term
memory capacity has generally been found to be positively corre-
lated with a variety of cognitive abilities, for example, executive
functioning (Miyake, Friedman, Rettinger, Shah, & Hegarty, 2001)
or performance on the Scholastic Aptitude Test (SAT; Engle,
Tuholsky, Laughlin, & Conway, 1999). The correlation between
the related construct of working memory capacity and reasoning
ability is even more pronounced (Kyllonen & Christal, 1990).
Moreover, the theoretical explanation of this low capacity advan-
tage, the small-sample hypothesis, has been criticized on theoret-
ical grounds, and there is also conflicting empirical evidence, both
of which are reviewed in the following.

Theoretical Limitations of the Small-Sample Hypothesis

Juslin and Olsson (2005) criticized Kareev (2000) for only
taking into account the hit rate when discussing the small-sample
advantage, that is, detecting a sample correlation (�) given that
there is a population correlation (�), p(�|�). In contrast, Juslin and

Olsson stressed the importance of the posterior probability of a hit,
p(�|�). That is, it is important to consider how likely it is that one
correctly infers that there is a population correlation �, based on a
sample correlation �. Applying this method takes false alarms
(e.g., believing that there is a positive correlation when it is in fact
zero or negative) into account and leads to the conclusion that the
alleged benefits of small samples do not occur.

R. B. Anderson et al. (2005), using a signal detection approach,
specified some conditions under which a small-sample advantage
could hold, even if one takes false alarms into account. Their
simulations demonstrated that a small-sample advantage can exist
if one makes the additional assumption that people only decide that
a correlation is present in the population when the correlation they
observe in the sample exceeds a decision threshold. Otherwise, the
observed correlation is ignored. If the decision threshold is above
or equal to the correlation in the population, a small-sample
advantage exists. For more liberal correlation thresholds (i.e.,
between zero and the population parameter), however, there is a
large-sample advantage.

In response to these criticisms, Kareev refined the small-sample
hypothesis, arguing that a small-sample advantage is only possible
for large correlations (Kareev, 2005; see also Kareev, 2000).
However, this restriction makes it problematic to explain, with the
small-sample hypothesis, the low capacity advantage observed in
Kareev et al. (1997, Experiment 1) because a low capacity advan-
tage was also observed for small correlations. Moreover, empirical
evidence conflicting with the small-sample hypothesis also exists,
which is reviewed in the following.

Conflicting Empirical Evidence

Kareev et al. (1997) assumed that people who consider
smaller samples are likely to perceive correlations as more
extreme than they actually are in the population. From this
assumption, it follows that people should also estimate corre-
lations as being higher when they base their estimate on a small,
compared with a large, sample. However, in experiments in
which participants repeatedly explicitly estimate correlations,
participants do not estimate higher correlations based on
smaller samples, but rather the tendency is that those estimates
increase with increasing sample size (e.g., Clément, Mercier, &
Pasto, 2002; Shanks, 1985, 1987). Moreover, studies with mea-
sures related to short-term memory capacity suggest that people
with lower capacities are less accurate in correlation assess-
ment. For instance, such people include those with lower gen-
eral cognitive ability as measured by SAT scores (Stanovich &
West, 1998), those who are elderly (e.g., Mutter & Williams,
2004; Parr & Mercier, 1998), and those who are performing
under increased memory demands (Shaklee & Mims, 1982).
That is, in correlation assessment, neither a small-sample ad-
vantage nor a low capacity advantage has been reported, but
rather the opposite. But then, the empirical finding of the low
capacity advantage on correlation detection reported by Kareev
et al. (1997) has to be reconciled with these other results.

An Alternative Explanation:
Differences in Predictive Behavior

Juslin and Olsson’s (2005) arguments imply that Kareev et al.’s
(1997) task is not really about the detection of correlation. Partic-

Figure 1. Prototypical contingency table.
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ipants did not have to detect a correlation among trials with a
correlation present (signal trials) and trials without a correlation
(noise trials), but they were separately tested on either signal or
noise trials, thereby not encountering the risk of false alarms.
Because the task therefore does not really pose a detection prob-
lem, one cannot conclusively argue for a low capacity advantage in
the detection of correlation. It has only been shown that low spans
are more successful given that there is a correlation. The theoret-
ical limitations of the small-sample hypothesis suggest that a
different cognitive mechanism could underlie this low capacity
advantage. In the following, we illustrate an alternative explana-
tion that builds on a reinterpretation of the task as simple proba-
bility learning.

Kareev et al. (1997) assumed that a low capacity advantage in
correlation detection stems from a more exaggerated perception of
correlation. However, the envelope task (Kareev et al., Experiment
1) did not assess differences in the perception of correlation.
Kareev et al. refrained from asking their participants about their
perception but rather inferred their perception from their predictive
behavior (a term used by Estes, 1976, for example). That is, they
counted how often a participant predicted an event, given the color
of the envelope, for example, how often he or she predicted X,
given a red envelope. These frequencies were used to compute
what Kareev et al. called the perceived correlation by entering
them into a contingency table, such as Figure 1, and determining
the phi correlation from this table. Inferring perception from be-
havior requires the strong assumption that people predict events
exactly with the relative frequency with which they perceive them.

In our view, it is necessary to disentangle perception and pre-
dictive behavior because predictive behavior can differ between
people who perceive the same correlation. Thus, it is possible that
differences in predictive behavior alone could be sufficient to
explain the low capacity advantage. To understand the difference
between perception and predictive behavior, and to understand
how differences in predictive behavior could be related to capacity
limitations, we next draw a connection to the probability learning
literature that goes back to Brunswik (1939) and Humphreys
(1939), and which has been extensively studied since the 1950s
(e.g., Estes & Straughan, 1954; for reviews, see Myers, 1976;
Vulkan, 2000).

Correlation Detection as Probability Learning

The typical probability learning task consists of repeatedly
predicting which of two events will occur next, with one event
usually having a higher probability of occurrence. The correlation
detection task used by Kareev et al. (1997) is similar because it
also requires predicting one out of two events (the symbols X and
O, given the color of the envelope). Bauer (1972), for example,
used a task that is almost identical to the one used by Kareev et al.
However, she did not cast it as a correlation detection task but
rather as a probability learning task with two cues (the colors) and
criterion events (the symbols).

A very simple predictive behavior that performs well is to
always predict the event that, so far, has been observed most
frequently. For example, if one event occurs with a probability of
70%, always predicting this event will result in an accuracy of
70%, on average. This behavior is called maximizing. Most often,
it has been found, however, that the majority of people do not
maximize. Instead, what is often found is probability matching

(Vulkan, 2000), which consists of predicting an event in propor-
tion to its probability of occurrence (i.e., an event that occurs with
a probability of 70% is predicted to occur in 70% of the trials).
Probability matching, on average, leads to lower accuracy (i.e.,
expected accuracy of .7*.7�.3*.3 � .58).

The distinction between maximizing and probability matching is
relevant for the correlation detection task used by Kareev et al.
(1997). Consider the two types of envelopes and the conditional
probabilities of the events, given the color of the envelope. Max-
imizing implies always predicting X when, for example, a red
envelope is shown, if X has been observed more frequently in the
past when opening red envelopes. Given a correlation between the
envelopes’ color and the symbols, this would then imply always
predicting O when a green envelope is encountered.2

The important point is that a person might have perfect percep-
tion of the probability of the events (or of the correlation) but
behave differently, for instance, by probability matching or max-
imizing. In contrast, Kareev et al.’s (1997) assumption that it is
possible to deduce perception from behavior presupposes that
everyone’s behavior matches their perception of the conditional
probabilities, but that low spans have a distorted perception of this
correlation.

Moreover, Kareev et al.’s (1997) explanation requires that peo-
ple actually think about the task in terms of the correlation between
the color of the envelopes and the frequencies of the different
symbols within them. But just because this task can be described
as a correlation detection task does not mean that the participants
view it this way. From the probability learning perspective (e.g.,
Bauer, 1972), one could assume that participants learn the condi-
tional probabilities of a symbol given a color independently for
each color. Thus, the perception of correlation argument would not
be applicable. But then, we need to explain how short-term mem-
ory limitations could be beneficial from the probability learning
perspective, which we do next.

Maximizing Is Fostered by Limited Memory Capacities

The probability learning literature has struggled with the phe-
nomenon of probability matching because it is inconsistent with a
person’s goal to maximize his or her payoff. West and Stanovich
(2003) argued that this inconsistency results from insufficient
cognitive capabilities, and it has been shown that this inconsis-
tency can be reduced with extensive training and high monetary
payoffs (e.g., Shanks, Tunney, & McCarthy, 2002). At odds with
this perspective that people are not smart enough to maximize is
evidence that reduced or limited memory capacities are associated
with a higher prevalence of maximizing.

On the one hand, there are studies demonstrating that people
with lower memory capacities maximize more frequently. Maxi-
mizing was shown to be more prevalent for people with lower
intellectual abilities (Singer, 1967), for children (Derks & Pa-

2 However, it is interesting to note that in the case of asymmetric
marginal distributions, it can occur that even when observing a positive
correlation between two variables, maximizing implies always predicting
the same event. For example, consider a sample of 20 red and 20 green
envelopes. Imagine that 19 Xs had been observed in red envelopes and 11
Xs had been observed in green envelopes, which leads to a substantial phi
coefficient of .46. Nevertheless, because X is the most frequent event for
both kinds of envelopes, maximizing implies predicting X every time.
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clisanu, 1967; Weir, 1964), and for different kinds of animals, such
as pigeons (Herrnstein & Loveland, 1975; Hinson & Staddon,
1983), rats (Bitterman, Wodinsky, & Candland, 1958), and mon-
keys (Wilson & Rollin, 1959). On the other hand, the likelihood of
maximizing is higher for people under the cognitive load of a
secondary task, which was shown with a concurrent estimation
task (Bauer, 1972; Neimark & Shuford, 1959) and with a verbal
working memory task (Wolford, Newman, Miller, & Wig, 2004).

An explanation for this could be that maximizing is very sim-
ple—a feature that is often overlooked (Bauer, 1972). In contrast,
probability matching could be the remnant of more involved
cognitive processes, such as searching for patterns in the sequence
of events, which has been nicely demonstrated in a probability
learning study by Yellott (1969). In the last block of his experi-
ment, participants always received feedback indicating that their
predictions were correct, irrespective of what they predicted. They
continued to match probabilities as they did previously, and when
they were asked for their impressions afterward, most responded
that they finally found the pattern in the sequence. Wolford, Miller,
and Gazzaniga (2000) hypothesized that the search for such a
pattern necessarily results in behavior that appears to be probabil-
ity matching because every reasonable pattern will have to match
the probabilities.

Preventing complex hypothesis testing, such as searching for
patterns by means of instruction, for example, by telling people
that the best they could do is reach an accuracy of 75% (Fantino &
Esfandiari, 2002), or by making the task look like a gambling task
and not a problem-solving task (Goodnow, 1955), increased the
prevalence of maximizing. Because working memory capacity is
related to hypothesis generation (Dougherty & Hunter, 2003),
lower memory capacities could foster maximizing by making
complex hypothesis testing, and thereby complex predictive be-
havior, less likely because it is more memory demanding.

Summary: Differences in Perception Versus Differences
in Predictive Behavior

The findings that people with lower or reduced memory capac-
ities show a higher prevalence of maximizing could present a
plausible alternative explanation for the low capacity advantage
found by Kareev et al. (1997). This implies that low spans are
more likely to maximize because they are less likely to test
complex hypotheses, and are thereby more likely to settle on
simple maximizing. The reasoning behind this explanation and the
explanation given by Kareev et al. are strikingly different. Kareev
et al. stressed the influence of short-term memory capacity on the
perception of correlation, which implies that the behavioral re-
sponse to the perception is always identical, whereas our alterna-
tive explanation builds on the idea that people could very well
share the same accurate perception but still differ in how they
respond to their perception. That is, we have here two competing
hypotheses. In the remainder of this article, we call Kareev et al.’s
explanation the small-sample hypothesis, and we call our alterna-
tive explanation the predictive behavior hypothesis.

Modeling the Competing Hypotheses in ACT-R

The central goal of this article consists of testing these hypoth-
eses for a low capacity advantage on the correlation detection task,
used by Kareev et al. (1997), against each other. An important step

in doing this, which Kareev has not yet carried out, is to specify a
precise computational model of the cognitive process of correla-
tion detection. We think it is important that the model specifies the
learning process, resulting in a certain perception of correlation
and the behavioral response, so that both processes can be disen-
tangled. To model the processes, we use Atomic Components of
Thought Rational (ACT-R), which has been developed by Ander-
son and his colleagues (e.g., J. R. Anderson et al., 2004; J. R.
Anderson & Lebiere, 1998). ACT-R is able to account for a wide
variety of phenomena including, for example, practice and reten-
tion (J. R. Anderson, Fincham, & Douglass, 1999), decision mak-
ing (Gonzalez, Lerch, & Lebiere, 2003), language learning (Taat-
gen & Anderson, 2002), and, important for us, probability learning
(Lovett, 1998). Implementing the correlation detection task in
ACT-R allows us to model the explanation for a low capacity
advantage on the basis of differences in perception, as provided by
Kareev et al. (1997), versus the explanation based on differences in
predictive behavior. Thereby, these models allow us to make
divergent predictions for people who differ in their short-term
memory capacity.

Implementing the Correlation Detection Task in ACT-R

The core of ACT-R is constituted by the declarative memory
system for facts and the procedural system for rules. Here, we
focus on the declarative memory system to model the correlation
detection task that results in an instance-based model, building on
Logan’s (1988) idea that previous solutions to a problem are stored
in memory as examples that can be retrieved to solve future
problems (for a more detailed description of instance learning in
ACT-R, see Taatgen, Lebiere, & Anderson, 2006). The declarative
memory system consists of chunks that represent information (e.g.,
about the outside world, about oneself, about possible actions,
etc.). These chunks take on activations that determine their acces-
sibility; that is, whether they can be retrieved. When applied to the
correlation detection task, chunks represent instances of possible
responses to the envelopes encountered in each trial. Altogether,
there are four chunks to represent all possible combinations of the
envelopes’ two colors and the two possible events connected with
the envelopes (i.e., “red envelope: X,” “red envelope: O,” “green
envelope: X,” and “green envelope: O”). As a consequence of
following ACT-R’s standard rule for reinforcing chunks, the his-
tory of how often and when chunks have been used in the past
determines their activation (see below). Because activation is a
combination of frequency and recency, different histories can lead
to the same activation in any given moment of time.

The model represents the cognitive processes of one single
individual solving the envelope task. Each time an envelope is
presented, the model attempts to retrieve one of the two responses
associated with the envelope’s color. For example, if there is a red
envelope, the model attempts to retrieve the chunks “red X” and
“red O.” These two chunks enter a retrieval competition because
only one of them can be retrieved at a time. The likelihood of each
chunk winning this competition depends on its activation. The
activation of a chunk is higher the more frequently and the more
recently it has been used. Depending on the activation level, a
chunk is probabilistically selected and determines the model’s
predicted response. After the response, the model receives feed-
back whether it was right or wrong, which leads to reinforcing the
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chunk representing the correct answer. Thus, the chunk that was
retrieved and triggered the response, and the correct chunk, are
reinforced, which thereby strengthens their activation. This also
implies that a correct answer will be reinforced twice, while an
incorrect answer results in reinforcing both the chosen and the
correct response once.

Formal definitions. Formally, the activation of a certain chunk
i is defined as

Ai � Bi � �
j

wjSji, (2)

where Bi is the base-level activation of chunk i that reflects its
learning history, the Wjs reflect the attentional weighting of the
elements that are part of the current goal, and the Sjis are the
strengths of association from the elements j of the current context
to chunk i. For our purpose, only the base-level activation is
relevant. The base-level activation of a chunk is defined by

Bi � ln��
j � 1

n

tj
�d), (3)

where tj is the time since the jth practice of an item and d is a decay
parameter for which .5 has emerged as a default value across a
variety of studies (J. R. Anderson et al., 2004). A chunk can only
be retrieved if its activation Ai is above a retrieval threshold 	;
accordingly, the probability that a chunk is retrieved is

Pi �
1

1 � e�(Ai � 	) /�2s, (4)

where s controls the noise of the retrieval process. If there is more
than one chunk that matches a retrieval request, the probability that
a particular chunk is retrieved is

Pi �
eAi /�2s

�
k

eAk /�2s
. (5)

If a chunk has been retrieved, the retrieval time is defined as

Ti � Fe�Ai, (6)

where F is a latency factor.
Parameters that relate to the competing hypotheses. There are

two parameters that are of interest to us because they can be related
to the two hypotheses (small-sample hypothesis vs. predictive
behavior hypothesis), the decay parameter d in the base-level
learning equation, and the noise parameter s in the equation spec-
ifying the probability of winning the retrieval competition. The
decay parameter d affects the impact of recency on the activation
of chunks. Note that there is no differentiation between short- and
long-term memory in ACT-R. The base-level learning equation
that produces rapid initial decay and slower later decay is key to
accounts of both short-term memory tasks, such as memory span,
and long-term memory tasks, such as free recall (J. R. Anderson,
Bothell, Lebiere, & Matessa, 1998). Without decay, each outcome
would be weighed equally, irrespective of how long ago it has been
observed. A model with high decay puts more weight on recent
information and tends to disregard old information. We believe

that this parameter offers a precise way to relate the small-sample
hypothesis proposed by Kareev (1995b; Kareev et al., 1997) to
processes in ACT-R. The higher the impact of recency, the fewer
items are important for a decision, which leads to paying attention
to a small sample.

The noise parameter s affects how likely it is that the more
activated chunk will win the competition. Without noise (i.e., s �
0), the most activated chunk will always be retrieved (given that it
is above the retrieval threshold 	), resulting in perfect maximizing
in the limit. Higher noise allows less activated chunks to be
retrieved from time to time. Although such noise results in sub-
optimal behavior under some conditions, it is also used to model
exploration (Taatgen et al., 2006). Thus, the noise parameter
provides a simple way to model facets of predictive behavior,
without developing a precise model of how people go about
searching for patterns. In this regard, it is important not to interpret
noise solely as error. Rather, higher levels of noise capture a
proliferation of hypotheses that a participant may entertain, yield-
ing behavior that looks like the model is searching for patterns in
the data. This searching results in probability matching (the precise
value for s leading to probability matching behavior depends on
the task), whereas low levels of noise result in deterministic
maximizing behavior. We think that the higher complexity of this
behavior makes the relation to short-term memory plausible.
Therefore, we believe that variation in this parameter nicely cap-
tures the predictive behavior hypothesis.

Method

We used two variants of the model to instantiate the two hypotheses for
explaining the low capacity advantage. With the first decay variant of the
model, we represent Kareev’s small-sample hypothesis, with fast decay
resulting in focusing on a small sample of recent events. With the second
noise variant of the model, we represent the predictive behavior hypothesis,
with low noise resulting in deterministic maximizing behavior.

Kareev kindly provided us with the data from Kareev et al.’s (1997)
Experiment 1, with which we constrained the models used in our simula-
tions. We chose the 128 trials from the conditions with � � |.375| with
symmetric distributions of Xs and Os contained in the envelopes (i.e., there
were 44 Xs [68.75%] and 20 Os [31.25%] contained in envelopes of one
color, while this was exactly reversed for the other color). This is the
condition that we also used in our experiments (see below). Note that the
qualitative modeling results did not depend on the actual correlation; that
is, modeling other conditions yielded the same qualitative results. The
model was fit to the relative frequency of maximizing responses; that is, the
average proportion choosing the maximizing answer on a particular trial
that was further averaged within four blocks consisting of 32 trials each.
This was done separately for high and low spans as defined by Kareev et al.

While it is, in principle, possible to differentiate between the two
model variants quantitatively on the trials that were fitted, it is not
possible to disentangle the two hypotheses qualitatively on those trials.
Therefore, we considered a manipulation that distinguishes between the
two model variants, and thereby the two hypotheses. A change in the
correlational structure of the environment (simply referred to as shift in
the following) allows for such a differentiation (see below). That is,
after the initial 128 trials with a correlation of � � �.375, we added
128 trials in which the correlation (i.e., the probability of each event
given one or the other color) was exactly reversed, that is, � � –.375.
If, for example, red was predictive for X in the 128 fitting trials, it was
predictive for O in the trials after the shift. Thus, we made predictions
for how high and low spans would adapt their behavior to this shift,
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depending on the variant of the model, and thereby the hypothesis.3

However, note that this shift was not implemented in Kareev et al.’s
(1997) experiment. Thus, we first fitted the two model variants to
Kareev et al.’s data, and second, the fitted models were used to predict
behavior for a hypothetical shift not conducted by Kareev et al.

To fit the models to Kareev et al.’s (1997) data, we only varied the one
parameter representing either of the hypotheses in each of the model
variants. That is, in the decay variant of the model, only decay d was varied
to fit the curves of both low and high spans separately, while noise s was
held constant. In the noise variant, only noise s was varied to fit the curves
of both low and high spans separately, while decay d was held constant. All
other parameters were set to identical values for both model variants. Our
parameter search was informal, and there is no guarantee that they produce
optimal fits on Kareev et al.’s data. But we were mostly interested in the
predictions made by the two model variants after the hypothetical shifts,
and there the qualitative results of the model did not change within a wide
range of parameter values. Each simulation was run 10,000 times to obtain
reliable results.

Results

Given the simplicity of the task, we think it is unrealistic that
people fail to retrieve an answer at any point in time. Therefore,
the retrieval threshold 	 was set to –10 to ensure that the model
never fails to retrieve a chunk in both model variants. The latency
factor F was set to .1. These parameter values are well within the
range of parameter values commonly used (see J. R. Anderson &
Lebiere, 1998). In the decay variant, we found the best fit for low
spans by setting d either to be fast (1, representing low spans, R2 �
.70) or absent (0, representing high spans, R2 � .93), while
keeping the noise s constant at .5. In the noise variant, we obtained
a good fit by setting the noise s to either .45 for low spans (R2 �
.74) or .6 for high spans (R2 � .95), while keeping the decay d
constant at its default value of .5. Overall, the predictions of both
model variants are quite good because both models appropriately
describe the increasing frequency of maximizing. However, both
models miss the drop in the relative frequency of maximizing that
the low spans exhibit on the third block, which explains the lower
fit for low spans (see Figure 2).

Before the shift, the decay variant of the model predicted a
higher frequency of maximizing with a higher decay parameter
value, representing faster forgetting, and thereby capturing the
behavior of low spans. The noise variant of the model captures the
behavior of low spans with the lower value of noise because lower
noise predicts a higher frequency of maximizing, representing a
more deterministic response. Therefore, both variants of the model
allow for the prediction of a difference in maximizing behavior for
low and high spans, although based on different mechanisms.
However, the decay parameter d was not able to fully capture the
magnitude of the gap separating the curves.

A clear difference between the predictions of the two variants of
the models emerged after the shift. Faster decay also led to
increased maximizing after a shift. Thus, according to the decay
variant, low spans should perform better both before and after a
shift. Moreover, the predicted fast decay advantage is even more
pronounced after the shift than before. However, the opposite
prediction was observed for the noise variant of the model. Lower
noise yielded decreased and not increased maximizing after a shift.
The chunks with the highest activations before the shift favor the
wrong choice after the shift. Thus, it is likely that a chunk is
retrieved that results in an incorrect (i.e., nonmaximizing) answer
after a shift, the lower the noise, the more so. Thus, according to

the noise variant, high spans who did worse before a shift should
outperform low spans after the shift.4 Figure 2 shows the predic-
tions of the two variants of the model.

Discussion

With the simulations, we tried to make differential predictions
between the predictive behavior hypothesis (modeled with noise)
and the small-sample hypothesis (modeled with decay). One could
argue that the decay model is not a strict translation of the small-
sample hypothesis, because the decay model assumes that people
rely on samples biased to include more recent items, whereas the
small-sample hypothesis assumes that people rely on random
samples (see, e.g., Karrev, 2004). Psychologically, it appears more
plausible that if people, owing to capacity limitations, have to rely
on a sample of data, the sample will tend to include more recent
cases rather than randomly sampling from all cases. It is simply
that older cases are harder to retrieve. This assumption is embed-
ded in ACT-R’s mechanisms for retrieval competition and is
endorsed by other researchers by its inclusion in their own com-
putational models of cognition (e.g., Erev, 1998; Rieskamp, Buse-
meyer, & Laine, 2003; Yechiam & Busemeyer, 2005). But even
small random samples are more likely to reveal the shift than large
random samples, as we found out in additional simulations (see
additional materials on the Web at http://dx.doi.org/10.1037/0278-
7393.32.5.966.supp).5 Thus, also strictly translating the random
sample procedure of the small-sample hypothesis results in the
same predictions as our decay model. Therefore, we think it is
appropriate to model the small-sample hypothesis with differences
in decay d.

When fitting the two model variants to the data, the noise variant
had a slightly better fit in predicting participants’ behavior. We
could not improve the fit of the decay variant by only varying

3 For convenience, we present the theory here in its complete form,
although it was formalized after running the experiments. Initially, we
started out with the informal hypothesis that if a low short-term memory
capacity helps people in detecting correlations, then it should also help
them in detecting a change in the correlation. The predictive behavior
hypothesis was developed after Experiment 1.

4 Note, however, that this only holds until the activation of the chunk
representing the correct (i.e., maximizing) answer is strengthened enough
so that it surpasses the activation of the chunk representing the wrong
answer. Then, lower noise would turn out to be beneficial once more. That
is, the disadvantage after a shift resulting from lower noise will only hold
as long as the relative frequency of maximizing is below .5, on average.
Therefore, this noise variant of the model predicts that, over time, low
spans catch up with high spans, and even outperform them after many trials
after the shift.

5 To find out whether small random samples are better able to detect a
shift in the correlational structure of the environment than larger samples,
we simulated the late-shift condition of our experiment with 256 trials with
a correlation of � � .375 followed by 128 trials with a correlation of � �
–.375. We were interested in how fast the shift would be detected in
random samples with sizes n, varying between 4 and 10. On each trial after
the shift, we randomly sampled n previous trials without replacement and
computed the sample correlation to see whether it indicated a “correlation
more extreme than that of the population” (Kareev et al., 1997, p. 278).
That is, the sample correlation had to be more negative than � � –.375 to
count as detection. The smaller the sample size n, the higher was the
probability of detecting the shift.
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decay d because the parameter values in the decay variant are at
the extremes of the reasonable parameter value space. The extreme
values signal a problem with the decay variant because usually
they are not set too differently from the default value of d � .5.
These results already support the predictive behavior hypothesis
represented with the noise variant of the model. However, both
model variants provide a good fit to Kareev’s data. A more
decisive comparison can be provided by considering the two
qualitatively different predictions that the two variants of the
model make after a shift in the environment occurs. Therefore, we
think that a correlation detection task (or probability learning task,
as we conceptualize it) that includes a shift in the environment will
assist in deciding which of the two hypotheses of the low capacity
advantage on correlation detection (small-sample hypothesis vs.
predictive behavior hypothesis) is more likely. If short-term mem-
ory capacity affects people’s perception of contingencies (or con-
ditional probabilities) in the manner suggested by the small-sample
hypothesis (Kareev et al., 1997), then it should be captured by the
decay parameter. The model makes the clear prediction that this
should result in a low capacity advantage after a shift. If, however,
lower short-term memory capacity fosters simple maximizing,
then the data should be congruent with the predictions made by
varying the noise parameter. Thus, there should be a low capacity
disadvantage after a shift. To test these predictions, we conducted
two experiments.

Experiment 1

Experiment 1 was designed to assess the impact of short-term
memory capacity on behavior in an extended version of the cor-
relation detection task used by Kareev et al. (1997, Experiment 1).
To test our model predictions empirically, we added shifts in the
correlational structure of the task (i.e., reversals of the correla-
tions), which made it necessary to conduct a computer version of
the task. To obtain a more complete picture of people’s cognitive
capacities, we administered measures of working memory in ad-
dition to the digit span short-term memory task used by Kareev et
al.

The idea for using these additional working memory measures
was that they allow for testing an additional hypothesis, regarding
performance after a shift, not captured by the models. Performance
after a shift will depend not only on detecting the change but also
on how susceptible people are to proactive interference; that is,
how strongly information that they have learned so far will inter-
fere when people attempt to learn new information or when they
attempt to adapt their behavior to this new information. Kane and
Engle (2000) found that people with a low working memory
capacity are more susceptible to proactive interference. Therefore,
one could imagine that low spans, even if they detected the shift
earlier, are not able to adapt their behavior to this shift appropri-
ately because they are more susceptible to proactive interference.
Such an effect could negate a possible advantage, resulting from an
earlier detection of correlation. This alternative hypothesis is, in a
sense, the opposite of the decay model in ACT-R. While the decay
model assumes faster forgetting for low spans, and thereby a
recency effect, the proactive interference hypothesis assumes a
stronger primacy effect for low spans. That is, it assumes that low
spans, owing to proactive interference, put too much weight on old
information and thereby fail to adapt to a changing environment.

Method

Participants. Eighty students (42 female, 38 male) with an average age
of 24 years (SD � 3.5) participated in the experiment. They were paid 7
euros (about U.S. $9) for participation, plus a bonus depending on their
performance.

Design and procedure. Each participant was tested individually in a
quiet room. We retained the task order of the original Kareev et al. (1997)
study. First, short-term memory capacity was measured with a digit span
forward task (as in Kareev et al.). Participants were required to verbally
repeat sequences of digits that were read to them by the experimenter at a
pace of approximately one digit per second. After correct repetition, the
length of the sequence increased by one digit, whereas a failure terminated
the task. Digit span capacity was determined by the highest number of
correctly repeated digits. After the digit span forward task, participants
were seated in front of a computer, where the correlation detection task was
presented to them. This task was a computer adaptation of the correlation

Figure 2. Model predictions of (A) the decay and (B) the noise variant.
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detection task used by Kareev et al. (Experiment 1). Participants sequen-
tially encountered red and green envelopes on the computer screen. Each
time, they had to predict whether the envelope contained a coin marked
with an X or an O. They received a 3-s feedback after each trial and were
paid 3 euro cents (about U.S. 4 cents) for each correct prediction. Kareev
et al. similarly rewarded their participants. Overall, there were 384 trials
divided into three seamless blocks (consisting of 128 trials each), in each
of which envelopes were drawn randomly without replacement.6 With
regard to differences in performance between high and low spans, the
conditions with a correlation of � 
 |.4| had, on average, the largest effect
size in Experiment 1 by Kareev et al. Therefore, we decided to administer
a condition with a correlation of that size. For all participants, the first
block in our experiment corresponded to the symmetric condition with
� � |.375|. Within this block, each participant encountered an identical
distribution of color–symbol combinations consisting of 44 Xs (68.75%)
and 20 Os (31.25%) in red envelopes and 20 Xs and 44 Os in green
envelopes.

There were four conditions that were identical in the first block but
differed according to whether shifts in the correlational structure (i.e., in
the probabilities of outcomes given the color of the envelope) occurred in
the second or in the third block. A shift always consisted of reversing the
correlation, resulting in � � –.375. That is, the distribution of symbols
within the envelopes was exactly reversed, so that there were 20 Xs and 44
Os in red envelopes, and 44 Xs and 20 Os in green envelopes, in blocks
after a shift. This large shift has the methodological advantage of leading
to very distinct predictions of the two hypotheses we want to test against
each other. Given the probabilistic nature of the task, anything less than
this could have been too difficult for the participants to detect. There was
no cue to indicate shifts in the correlational structure.

In the first constant condition, no shift occurred; in the second early shift
condition, a shift occurred after the first block; in the third late shift
condition, a shift occurred after the second block; and in the fourth back
shift condition, there was a shift after the first block and a shift back to the
initial correlation after the second block. These conditions are displayed in
Table 1.

The motivation of the different conditions was the following. The
constant condition is useful to see how the low capacity advantage, if
replicable, develops over time. Because we do not know when a change
would affect participants strongly, we think it is useful to also have an early
and a late shift condition, independent of which model is more appropriate.
If people catch on to a change in the environment quickly, then it is
interesting to see how they catch another change as is provided in the back
shift condition.

After the correlation detection task, we administered a counting span and
an operation span task (Engle et al., 1999) as additional working memory
measures. The main difference between short-term and working memory is
that short-term memory only requires storage, whereas working memory
additionally requires processing (Miyake et al., 2001). The counting span
task consisted of counting aloud the objects on the screen and remembering
the number for a later test. After several trials, participants had to recall all
the numbers from the last two to six trials. For the operation span task,
people had to evaluate simple mathematical equations and read aloud
words that appeared with the equations on the screen. After two to five
trials, they had to write down the words from these trials.

Results and Discussion

For all analyses of behavior in the different blocks, conditions
were collapsed if they were comparable up until this point in the
experiment. That is, the analyzed block and all previous blocks had
to share the same correlational structure. For example, behavior in
Block 2 after an early shift can be pooled across the early and the
back shift conditions. Table 2 summarizes all correlations between
the different capacity measures and the relative frequency of
maximizing behavior on the different blocks.

Replication. Analyzing the first block, which was comparable
for all participants, allowed us to check whether we could replicate
the low capacity advantage observed by Kareev et al. (1997). In
keeping with the original analysis, we split the participants into
two groups according to their median digit span capacity. Because
it was not clear whether to treat those with median scores as high
or low spans, we decided to exclude them. We believe this adds
less noise than Kareev et al.’s procedure of randomly categorizing
participants with a median value as high and low digit spans. Low
digit spans (M � 73.82, SD � 5.40) performed better on the task
than high digit spans (M � 68.75, SD � 9.30), t(43.37) � 2.50,
p � .02, with corrected degrees of freedom due to higher variance
for high spans, F(1, 54) � 10.68, p � .01. The mean difference
corresponds to an effect size of Cohen’s d � 0.67. This effect size
is lower, compared with the corresponding condition of Kareev et
al., with an effect of d � 0.94. As we deliberately picked a
condition with a comparatively large effect size, some regression
to the mean is likely to occur. In Kareev et al., the overall effect
size was d � 0.33. Thus, the effect size in the present study was
somewhere between the overall effect size Kareev et al. had
observed and that which was observed in the conditions closest to
our own. In sum, the original finding could successfully be
replicated.

The variance for high digit spans was higher because their
prevalence of maximizing was lower, on average. A group of
participants who adopted perfect maximizing would have the same
expected performance. In contrast, a group of participants who did
not adopt maximizing would, on average, perform less well, com-
pared with the maximizing group, but would also show much more
variance in performance, which could, in principle, vary between
0% and 100% accuracy.

Because the performance depends to a certain degree on chance,
we decided to focus on the relative frequency of maximizing. For
each participant, we computed the proportion of trials in which
participants chose the option corresponding to maximizing (i.e.,
choosing X if red and O if green before the shift, and vice versa
after the shift). A value of .5 reflects random behavior, a value
close to the frequency of the more frequent event in the environ-
ment (68.75%) reflects probability matching, and a value of 1
reflects perfect maximizing. We argue that this measure is less
noisy than the performance because it is independent of the out-
come of a decision (although it naturally correlates with perfor-
mance; r � .89, p � .01). We think that this measure is easier to
grasp intuitively than the measure Kareev et al. (1997) used, which

6 We wanted to be as close as possible to Kareev et al.’s (1997)
Experiment 1, in which people drew envelopes from a real bag, also
without replacement.

Table 1
Conditions in Experiment 1: Positive or Negative Correlations
in the Blocks

Condition Block 1 Block 2 Block 3

Constant � � �
Early shift � � �
Late shift � � �
Back shift � � �
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they originally called perceived correlation. The relative frequency
of maximizing is correlated by 1 to perceived correlation, and for
our analyses, it made no difference which measure was applied.

In the analysis reported above, we used a median split to
correspond with Kareev et al.’s (1997) analysis. However, median
splits decrease statistical power and can introduce error, primarily
because the inherent variability of the predictor is reduced (Irwin
& McClelland, 2003). Therefore, in the following analyses, we
computed correlations to include all levels of digit span capacity
where this was applicable. The low digit span capacity advantage
was also reflected in a negative correlation between digit span
capacity and preshift maximizing on the first block (r � –.23, p �
.04), indicating that low digit spans show maximizing more fre-

quently in this block. The course of preshift maximizing on the
first 128 trials is depicted in Figure 3.

Postshift trials. In the trials after a shift, the correlation in the
environment was reversed. Therefore, maximizing now consisted
of choosing the opposite object, given a color (e.g., O is now the
maximizing answer, given red, because the maximizing answer
was X previously). In contrast to the small-sample hypothesis,
there was no relation between digit span capacity and postshift
maximizing behavior on the early postshift block (r � .13, p �
.41), and even a high digit span capacity advantage, indicated by
a positive correlation between digit span capacity and postshift
maximizing on the late postshift block, was observed (r � .49,
p � .03). These results are contrary to the prediction of the

Table 2
Summary of Results in Experiment 1

Measure

Maximizing

Preshift Postshift

Block 1 Block 2 Block 3

Early Late Back

Block 2 Block 3 Block 3 Block 3

Digit span
r �.23 �.16 �.44 .13 �.04 .49 �.11
p .04 .32 .05 .41 .87 .03 .64

Counting span
r .01 �.15 �.21 �.14 �.08 .19 �.12
p .96 .37 .38 .38 .73 .43 .61

Operation span
r �.06 �.17 �.08 �.03 �.15 �.13 �.14
p .60 .30 .73 .85 .53 .58 .56

n 80 40 20 40 20 20 20

Figure 3. Preshift maximizing on Block 1, Experiment 1. The amount of maximizing is averaged within a
moving window of 32 trials and is reported separately for high and low digit spans as derived by the median split.
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decay variant of our model implementing the small-sample
hypothesis. According to the decay variant model, the low digit
span capacity advantage, corresponding to a fast decay param-
eter value of the model, leads to an even more pronounced
advantage after a shift. Instead, the data revealed either no
effect or the opposite, and are thereby congruent with the
predictions made by the noise variant model representing the
predictive behavior hypothesis. Postshift maximizing behavior
was only related to digit span capacity in the late shift condi-
tion, and here, the correlation was positive. That is, high digit
spans adopted maximizing with a higher relative frequency
after the late shift. This condition is depicted in Figure 4.

Other working memory measures. Naturally, digit span capac-
ity was correlated with both counting span (r � .24, p � .03) and
operation span (r � .24, p � .03). However, the other working
memory measures were unrelated to pre- and postshift behavior.
That is, neither the low digit span capacity on preshift trials nor the
high digit span capacity advantage on postshift trials could be
captured by those measures. If the high digit span capacity advan-
tage on the postshift trials were due to higher proactive interfer-
ence of the low digit spans, this should be captured with one of the
other working memory measures, which were also used by Kane
and Engle (2000). Therefore, we are confident that this high digit
span capacity advantage on postshift trials indeed favors the pre-
dictive behavior hypothesis (although we try to more carefully rule
out the proactive interference hypothesis in Experiment 2; see
below).

Preliminary Conclusion

The overall picture supports the hypothesis that it is not people’s
perception of correlation that differs between people with high and

low digit span capacity, but differences in predictive behavior (i.e.,
differences in how consistently they maximized their payoffs).
There was a low digit span capacity advantage before a shift, but
no difference or even a high digit span capacity advantage that
emerged after a shift. Thus, the data are not at all congruent with
the decay variant of the model, but they are congruent with the
noise variant, and thereby, our assumption that differences in
predictive behavior are of importance.

However, we did not find a high digit span capacity advantage
after an early shift, but only after a late shift. Because the sample
size of the late shift condition in which we found a postshift high
digit span capacity advantage is small (n � 20), we should inter-
pret this finding with care.

Experiment 2

The second experiment was a slightly refined version of the
first, intended to replicate the important results of Experiment 1.
Now, we know that a change in the correlational structure of the
environment only reveals differences between high and low spans
after many trials. Therefore, we only implemented the late shift
condition in which we found a high capacity advantage. We also
wanted to more strongly rule out the alternative hypothesis that
high spans were at an advantage after a shift because they were
less susceptible to proactive interference. In Experiment 1, we only
addressed this question by assessing additional working memory
measures that were shown to be related to proactive interference
(Kane & Engle, 2000). However, Kane and Engle used extreme
group comparisons and a large sample size (192 and 216 partici-
pants, respectively) to show the modest relation between working
memory and susceptibility to proactive interference. That is, there
could have been proactive interference that we did not capture with

Figure 4. Maximizing on all trials, Experiment 1, late shift condition. Low and high digit spans were averaged
separately across trials within a moving window of 32 trials. To prevent an overlap between trials before and
after the shift in this window, we started averaging again after the shift, which is indicated by the two lines. That
is, the last depicted data point before the shift consists of the last 32 trials before the shift, and the first depicted
data point after the shift consists of the first 32 trials after the shift.
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our working memory measures. Therefore, we assessed suscepti-
bility to proactive interference directly.

Method

Participants. Eighty students (51 female, 29 male) with an average age
of 24 years (SD � 3.6) participated in the study. They were paid 9 € (about
U.S. $11.50) for participation, plus a bonus depending on their perfor-
mance (identical to Experiment 1, per correct trial 3 € [U.S. 4] cents).

Design and procedure. Each participant was tested individually in a
quiet room. Again, we kept the task order as in the original study by Kareev
et al. (1997), starting with the digit span forward task to measure short-term
memory capacity. This time, digit strings were digitally recorded before-
hand, so that participants listened to identical audio files instead of listen-
ing to an experimenter reading the digits to them. The correlation detection
task consisted of only the late shift condition of Experiment 1, with a shift
seamlessly occurring after two blocks. Colors of the envelopes and keys on
the keyboard (e.g., whether X was left or right) were counterbalanced. For
a more detailed description of the task, see Experiment 1.

We included the counting span task again (see Experiment 1). Further-
more, we assessed susceptibility to proactive interference (Kane & Engle,
2000), which we considered to be a possible alternative explanation for the
high digit span capacity advantage after a shift in Experiment 1. This task
consisted of learning three word lists with words that belong to one
category (professions) and one word list that belongs to another category
(animal names). The words were presented successively, and participants
had to recall as many words as possible after each list. It is usually
observed that performance decreases over the course of the three word lists
from one category ( proactive interference) and then increases again on the
last word list ( proactive interference release).

Results and Discussion

A repeated measures analysis revealed no difference between
the counterbalanced conditions with regard to maximizing in the
three blocks, F(5, 127) � 0.76, p � .58. Therefore, all counter-
balancing conditions were merged. It was surprising that the orig-
inal low capacity advantage on preshift maximizing could not be
found in Experiment 2. There was no significant correlation be-
tween digit span capacity and preshift maximizing on Block 1 (r �
–.08, p � .50) and on Block 2 (r � –.10, p � .38). There was also
no postshift high digit span capacity advantage; postshift maxi-
mizing on Block 3 was unrelated to digit span capacity (r � .10,
p � .39).

Neither proactive interference nor its release could predict any
behavior. That is, postshift maximizing really does not seem to be
a function of susceptibility to proactive interference at all. Proac-
tive interference was not correlated with digit span or counting
span. Surprisingly, counting span was positively correlated to
preshift maximizing on Block 2 (r � .27, p � .02).

Because both experiments were almost identical in structure,
this result surprised us. Therefore, we suspected that some pecu-
liarity of our sample in Experiment 2 might be responsible. Digit
span capacity and counting span capacity were comparable be-
tween the experiments. The only demographic variables assessed
were age and sex. The only difference between the samples from
the two experiments that struck us was the larger proportion of
women in Experiment 2, compared with Experiment 1 (63.8% vs.
52.5%), which suggested that we should explore sex differences in
a post hoc analysis.

Post Hoc Analyses of Sex Differences

One reason for the different results might be based on sex
differences because a different proportion of men and women
participated in Experiment 2. We decided to merge the data sets
from our two experiments to have a reasonable sample size to
analyze men and women separately.

Merging the data sets only makes sense for blocks that are
identical in both position (i.e., first, second, third) and learning
history for both experiments, which is the case for the first two
preshift blocks and the late postshift block. It results in sample
sizes of n � 160 for preshift Block 1, n � 120 for preshift Block
2, and n � 100 for postshift Block 3 from the late shift condition.
For all other blocks, we do not have an appropriate sample size to
further divide them by sex. Individual difference measures as-
sessed in both experiments were digit span and counting span.

An examination of the correlations between digit span and
counting span, on the one hand, and relative frequency of maxi-
mizing, on the other hand, separately for men and women, indeed
revealed a sex difference. The preshift low digit span capacity
advantage and the postshift high digit span capacity advantage
only existed for men but not for women. For women, there was
even a positive correlation between counting span and preshift
maximizing (see Table 3).

To illustrate this, Figure 5 depicts the relative frequency of
maximizing, separately for men and women from the late shift
condition in Experiment 1 and from Experiment 2 in which only
the late shift condition was conducted. Men and women were
separately divided into high and low digit spans with a median
split (based on all participants), and the relative frequency of
maximizing is averaged within a moving window of 32 trials.

The difference lies in the interaction. Men and women did not
differ on absolute levels of relative frequency of maximizing
(MMen � 0.64; MWomen � 0.65), F(1, 158) � 0.22, p � .64, or
performance (MMen � 70.82%; MWomen � 70.99%), F(1, 158) �
0.02, p � .89, on Block 1, which we chose for this comparison
because there are comparable data for all participants on this block.
Note, however, that digit span capacity was higher for men
(MMen � 6.22; MWomen � 5.85), F(1, 158) � 4.32, p � .04, which
was not the case for counting span (MMen � 0.71; MWomen �
0.69), F(1, 158) � 0.34, p � .56. There was a correlation between
digit span and counting span for men and women (r � .26, p � .03
and r � .21, p � .04).

Fortunately, we were able to test whether this sex difference is
a peculiarity of our samples or something that may be more
general because Kareev provided the original data set from Kareev
et al.’s (1997) Experiment 1. It included a total of 112 participants
(64 women, 48 men). Note that this experiment did not include a
shift in the correlational structure, so that we could only test
whether the sex difference on preshift trials also holds there. It
does: There only is a (negative) correlation between performance
and digit span capacity for men (r � –.28, p � .06) but not for
women (r � .06, p � .66). The same holds for the correlation
between digit span and the absolute strength of perceived corre-
lation (which corresponds to the variable we call maximizing),
which only existed for men (r � –.29, p � .05) but not for women
(r � –.05, p � .68). Here, men and women did not differ with
respect to performance, F(1, 110) � 0.44, p � .51; the absolute
strength of perceived correlation, F(1, 110) � 1.44, p � .23; and
digit span capacity, F(1, 110) � 1.54, p � .22.
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In summary, the low digit span capacity advantage on trials
before a shift only exists for men, which was the case for the
present experiments and Kareev et al.’s (1997) Experiment 1. In
Experiment 2, the preshift low digit span capacity advantage
developed over time and was stronger on preshift Block 2. In our
view, this strengthens our argument that the difference between
high and low digit spans lies in differences in predictive behavior.
If the difference lied in perception, and thereby in the earlier
detection of the correlation by low digit spans, as assumed by
Kareev et al., then this difference should be more pronounced
earlier rather than later. The postshift high digit span capacity
advantage also existed only for men. That is, for women, digit span
was unrelated to behavior. It is interesting to note that counting
span was related to behavior, but in the opposite direction: It was
positively correlated to the relative frequency of maximizing be-
fore a shift.

General Discussion

The goal of this article was to disentangle two potential expla-
nations for the stunning finding of a low digit span capacity

advantage on correlation detection (Kareev et al., 1997). Kareev et
al.’s original explanation was that low digit spans perceive corre-
lations as more extreme than they actually are because they base
their estimates on smaller samples from the environment. Small
samples statistically tend to overestimate correlations, and this
overestimation can be advantageous in correlation detection. We
have called this the small-sample hypothesis.

However, the small-sample hypothesis has been criticized the-
oretically (R. B. Anderson et al., 2005; Juslin & Olsson, 2005), and
some studies dealing with contingency assessment provide con-
flicting evidence (e.g., Clément et al., 2002; Shanks, 1985, 1987).
Therefore, we explored whether the low digit span capacity ad-
vantage found by Kareev et al. (1997) could be explained differ-
ently. Instead of assuming that people differ in their perception of
correlations, we assumed that people differ in their predictive
behavior. This predictive behavior hypothesis was inspired by
revisiting the related probability learning literature, which revealed
convergent evidence showing that the most successful predictive
behavior (maximizing) can be related to a reduced or limited
memory capacity.

Table 3
Exploring the Sex Difference of the Interaction Between Capacity and Maximizing

Measure

Maximizing

Men Women

Preshift Postshift late Preshift Postshift late

Block 1 Block 2 Block 3 Block 1 Block 2 Block 3

Digit span
r �.19 �.43 .36 �.10 .13 .12
p .12 �.01 .03 .37 .30 .34

Counting span
r .03 �.09 �.03 .18 .33 .21
p .83 .53 .86 .09 �.01 .11

n 67 50 38 93 70 62

Figure 5. Maximizing separately for high and low digit spans, late shift condition, both experiments, for (A)
women and (B) men. We averaged low and high digit spans separately across trials within a moving window of
32 trials and started averaging again after the shift, which is indicated by the two lines (see also Figure 4).
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We therefore hypothesized that low digit spans are more likely
to maximize their payoffs more consistently, resulting in the low
digit span capacity advantage. Based on the initial learning trials as
implemented by Kareev et al. (1997), one cannot distinguish
conclusively between the small-sample hypothesis and the predic-
tive behavior hypothesis. However, by instantiating both of these
explanations in ACT-R models, it was possible to demonstrate that
these hypotheses make different predictions about how partici-
pants will behave after a shift in the correlational structure of the
environment. The model that implemented the small-sample hy-
pothesis predicted a low digit span capacity advantage before and
after a shift. In contrast, the model that implemented the predictive
behavior hypothesis exhibited a low digit span capacity advantage
before a shift but a high digit span capacity advantage after a shift.

Support for Differences in Predictive Behavior

The results of Experiments 1 and 2 replicate the low digit span
capacity advantage found by Kareev et al. (1997), although these
and the following results only held for men (see A Puzzling Sex
Difference section, below). After a shift in the environment, how-
ever, we found either no difference between high and low digit
spans or a high digit span capacity advantage. This is contradictory
to the assumption made by the proponents of the small-sample
hypothesis that high and low digit spans differ in their perception,
but it is congruent with our assumption that this difference lies in
predictive behavior.

However, if one wanted to keep the perceptual argument, one
could argue that low spans are less likely to engage in further
sampling, because they perceive the correlation as more extreme,
and hence reach a conclusion faster. High spans, in contrast, keep
sampling, because they have observed a weaker correlation and are
less committed to their estimate, and hence are less at a disadvan-
tage when a change takes place. Nevertheless, we see an advantage
of our explanation is its consistency with similar findings of a low
capacity advantage in the binary choice probability learning liter-
ature (e.g., Wolford et al., 2004). The typical binary choice task is
very similar to the task at hand, but a sample-based perceptual
argument cannot hold, because one only needs to acquire infor-
mation about proportions. In contrast to correlations, sample pro-
portions are unbiased estimators of population proportions. Thus,
our account covers those highly related results, which the percep-
tual argument does not. Moreover, the results for men revealed that
the low capacity advantage developed over time (at least in Ex-
periment 2). It was stronger on Block 2 than on Block 1, which is,
in our view, further counterevidence for the small-sample hypoth-
esis. According to it, the low digit span capacity advantage lies in
the early detection of strong correlations due to the small-sample
bias to overestimate these correlations. Thus, it should plausibly
have the largest effect early in the experiment.

Estimation Versus Prediction

We think that explaining the low capacity advantage in this
correlation detection task with differences in predictive behavior
rather than with differences in the perception of correlation also
reconciles this low capacity advantage with apparently conflicting
empirical evidence. Assuming that people with a lower short-term
memory capacity consider smaller samples, and thereby perceive
correlations as more extreme, conflicts with findings that correla-

tion estimates are higher with larger rather than with smaller
samples (e.g., Clément et al., 2002; Shanks, 1985, 1987). For
correlation estimation tasks, there is usually also no low capacity
advantage reported, but rather the opposite (e.g., Shaklee & Mims,
1982). But estimation and prediction are two different processes.
For the task at hand, precise estimation is not necessary. It suffices
to figure out which symbol is more frequently associated with
which color. Building on that, the simpler predictive behavior by
low spans is more successful, at least until the shift.

Plausibility of the ACT-R Model

The results we found are congruent with the noise variant of our
model that we use to implement the predictive behavior hypothe-
sis. Noise has been used in ACT-R to account for different levels
of explorative behavior (Taatgen et al., 2006). The noise parameter
can account for differences in predictive behavior, capturing the
result that high digit spans tend to probability match whereas low
digit spans are more likely to maximize.

At first glance, it may not be clear how the noise parameter
relates short-term memory capacity to the tendency to match the
probabilities. The connection may be that people do not actually
attempt to match probabilities, but rather that probability matching
is the result of more complex predictive behavior, such as pattern
search (e.g., Wolford et al., 2004). Looking for patterns in the
envelope task requires tracking the order of events, which could
place high demands on memory. In contrast, explicitly assessing a
correlation requires just knowing the frequencies of color–symbol
combinations, because the order in which these appeared is irrel-
evant. So the cause of the low span advantage could be that people
with a low short-term memory capacity find it difficult to entertain
complex patterns and, therefore, tend to settle on maximizing.
Because noise is used to model the outcome of either simple
predictive behavior (maximizing) or rather complex predictive
behavior (pattern search, resulting in probability matching), we
think it is reasonable to capture this short-term memory phenom-
enon with noise in ACT-R.

It is plausible that more complex predictive behavior helps
people to adapt to a shift appropriately. But even though we use
noise to model this complexity, this does not mean that more noise
is always better and that more noise can always be interpreted as
higher complexity. More noise can also mean unsystematic, ran-
dom variability, which can be detrimental. If noise were too high,
for example, then the predicted behavior would be approximately
at chance level before and after a shift. Results that could be
interpreted in this way were reported by Sanford and Maule
(1973). They compared the relative frequency of maximizing
between young and old people in a simple binary probability
learning task, including a shift. Older people performed worse than
young people before and after the shift. While young people
reached probability matching or slightly overmatched both before
and after the shift, old people stayed below the probability match-
ing level even before the shift and were approximately at chance
level after the shift. This could indicate high levels of noise (in the
sense of too much random variation) for the old people, which
clearly slows the adaptation to a shift.

Besides the psychological plausibility of the model, we were
also interested in discussing the model in terms of signal detection
theory. As Juslin and Olsson (2005) pointed out, it does not suffice
to look at the hit rate, but one ultimately needs to consider the
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posterior probability of a hit, which also takes false alarms into
account. More specifically, we were interested in the question
whether the noise and the decay models make different predictions
about high and low spans with regard to sensitivity and response
bias. To analyze the models’ sensitivities, we compared how well
they could distinguish signal trials (as described in the part about
the ACT-R simulations) from noise trials (i.e., trials in which the
distribution of symbols in the envelopes was random). To analyze
the models’ response biases, we looked at the false alarm rates of
each model’s responses on the noise trials, which indicate how
likely it is that a model interprets noise as signal.

Presenting these signal detection analyses in detail would go
beyond the scope of this article (for details, see additional mate-
rials on the Web at http://dx.doi.org/10.1037/0278-7393.
32.5.966.supp). Essentially, the results suggest that both the noise
and the decay models predict a higher sensitivity for the low spans
compared with the high spans. That is, the low spans are better
able to distinguish the signal from the noise trials. Furthermore, the
noise model also predicts a higher response bias for low spans,
whereas the decay model predicts rather the opposite (and also a
much smaller difference in response bias). That is, the noise
model, which we believe to more accurately describe the differ-
ences between high and low spans, predicts that low spans are
more likely to interpret something as signal. These simulation
results fit nicely with our interpretation that low spans explore less
and settle more quickly on maximizing, whereas high spans are
more careful in drawing conclusions and continue to explore
longer.

Relations to Other Models

The implementation in ACT-R is based on the idea that in-
stances of possible solutions are stored in memory that can be used
to solve future trials (Logan, 1988). Therefore, it is interesting to
consider similarities and differences to other instance-based mod-
els such as exemplar models. One exemplar model that has been
used to explain multiple-cue probability judgment is ProbEx
(probabilities from exemplars; Juslin & Persson, 2002). ProbEx
could plausibly solve the envelope task by storing the outcome of
each trial as a separate exemplar, with the exemplars containing
information about the color of the envelope and the symbol within
it. On each trial, it activates exemplars as a function of their
similarity to the stimulus. Because each stimulus has only one
feature (the color of the envelope), there are always a large number
of exemplars that have exactly the same similarity. Thus, it would
basically retrieve exemplars proportionally to their frequency of
occurrence. ProbEx has a deterministic choice rule and will always
select the option supported by more exemplars. But because the
sampling of exemplars is probabilistic, ProbEx still could predict
behavior similar to probability matching on the aggregated level.
Another possibility for ProbEx to approach the task would be to
store not only the outcomes as exemplars but also the answers as
additional exemplars. This would make it similar to our ACT-R
models, in which the activation of a chunk is also a function of
outcome and behavior. In this manner, ProbEx would predict
overmatching and asymptotically approach maximizing over time,
because the proportion of exemplars representing the maximizing
answer will grow steadily the more often it is chosen. Similar to
our model without decay, ProbEx does not forget exemplars and so

after the shift would have difficulty overcoming its initial response
tendencies.

The exemplar-based random walk model (EBRW; Nosofsky &
Palmeri, 1997) weighs recent exemplars more strongly and thus
will be better able to capture a shift. This model is an extension of
the general context model (GCM; Nosofsky, 1986), which predicts
probability matching (Nosofsky, Kruschke, & McKinley, 1992).
If, in a categorization task, GCM receives Category A feedback in
70% of the cases, it will predict Category A in 70% of the cases.
Because EBRW includes GCM as a special case, it can also
account for probability matching. However, it has a parameter that
allows the theory to account for maximizing, namely the response
criteria defining how much evidence the model needs before
making a decision. The higher the response criterion, the more
deterministic (i.e., maximizing) the choices predicted by the model
will be, resulting in a greater sensitivity to differences between the
two categories. Such a model would be very similar to our pre-
dictive behavior models, in which we modeled higher sensitivity
with lower noise.

The results presented here could also be interpreted in the light
of the RELACS model (reinforcement learning among cognitive
strategies; Erev & Barron, 2005; see also Rieskamp & Otto, 2006).
The model is able to capture a large variety of binary choice tasks.
It assumes three different cognitive strategies that are involved in
those tasks: fast best reply (i.e., select the action with the highest
recent payoff), case-based reasoning (i.e., choose the best action
that led to the best outcome in a similar case in the past), and slow
best reply (i.e., a slow learning of the strategy likely to maximize
earnings). The pattern search process could be modeled either with
a high proportion of case-based reasoning or with a high explora-
tion in slow best reply. Both of these implementations would
predict a deviation from maximizing, similar to increased noise in
the ACT-R model we applied.

Why Is Digit Span a Better Predictor Than Other
Working Memory Measures?

We were surprised to find a relation only between behavior and
short-term memory capacity assessed with a digit span test but not
with one of the working memory measures, counting span or
operation span. It is unlikely that this is due to a lack of reliability
in these measures, because these tasks usually have a reliability,
based on internal consistency, between .70 and .90 (with 0 and 1
being the borders no reliability and perfect reliability; Conway et
al., 2005). As pointed out before, short-term memory tasks tend to
emphasize the simple storage of information, whereas working
memory tasks require the additional processing of the information
being stored (Miyake et al., 2001).

We have argued that the lower performance of high digit spans
is the result of their more complex predictive behavior. They
search for patterns, but because there are none, they fail. Of our
capacity measures, only digit span capacity was related to the
prevalence of maximizing, suggesting that simple storage is par-
ticularly important for pattern search. If one adopts the strategy of
rehearsing the sequence of events to search for patterns in it, then
one constraint on pattern search is storing the sequence. Other
processes involved in pattern search, such as hypothesizing about
specific patterns, should be more strongly related to working
memory (for the relation between working memory and hypothesis
generation, see, e.g., Dougherty & Hunter, 2003). Finding no
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relation between working memory and maximizing, however, sug-
gests that this part of pattern search, at least for this task, did not
tax the working memory capacity of even our low-span partici-
pants. So, the difference between simple storage (required for the
digit span test) and more complex processing (additionally re-
quired for the working memory tasks) would explain why we only
found a relation between digit span capacity and behavior.

A Puzzling Sex Difference

We found an intriguing sex difference in the interaction between
digit span capacity and predictive behavior. Only men exhibited
the low digit span capacity advantage before a shift and the high
digit span advantage after a shift. In contrast, short-term memory
capacity did not explain any variance in the behavior of women.
This sex difference in the interaction between short-term memory
and predictive behavior exists in the data from Experiments 1 and
2 and in Kareev et al.’s (1997) data.

In the probability learning literature, a sex difference with
respect to the absolute amount of maximizing has been reported:
West and Stanovich (2003) found that men were more likely to
deliberately opt for a maximizing strategy when a typical proba-
bility learning task was described to them and they had to specify,
in advance, what they would do. Furthermore, there are reports of
sex differences favoring men in a similar task, the Iowa Gambling
Task (Overman, 2004; Reavis & Overman, 2001). However, in the
data reported here, there is no sex difference in decision making
(here: maximizing behavior) per se, but only in the interaction
between short-term memory capacity and maximizing.

Because maximizing behavior is comparable on average, it is
likely that men and women do not differ with regard to the
complexity of their predictive behavior on average. However,
looking at the low digit spans only, it seems to be the case that
women are better able to engage in complex behavior (resulting in
nonmaximizing) despite a low digit span capacity. This suggests
that women can draw on resources other than simple storage
capacity, whereas men draw more exclusively on the simple stor-
age that the digit span test presumably taps.

Because we do not have additional data, we can only speculate
about what these resources could be. Reliable sex differences
favoring women have been repeatedly shown on episodic memory
tasks, particularly those with a verbal component (for an overview,
see Herlitz, Nilsson, & Bäckman, 1997). More generally, females
surpass males on tasks in which verbal processing of material is
either required or can be used (Lewin, Wolgers, & Herlitz, 2001).
This indicates that women could more easily engage in verbal
processing to solve a task. Speculating about patterns in sequences
of events is a task in which verbalization clearly is possible. Thus,
women could draw on verbal episodic memory to search for
patterns, whereas men are apparently more likely to depend on
short-term memory to store these sequences. This would explain
why digit span capacity only explains the variance in the maxi-
mizing behavior for men but not for women.

Conclusion

We reported counterevidence to the small-sample hypothesis of
correlation detection. Our modeling and empirical results support
the view that differences between high and low digit spans lie in
differences in predictive behavior and not in differences in per-

ception, although the whole effect only seems to exist for men.
Yet, we agree with Kareev et al. (1997) that subtle benefits can
follow from what are commonly seen simply as limitations
(Hertwig & Todd, 2003; Schooler & Hertwig, 2005). For example,
forgetting has been interpreted not simply as regrettable failures of
the memory system but as reflecting statistical patterns with which
information recurs in the environment (J. R. Anderson & Schooler,
1991).

Therefore, while we are, in general, sympathetic to the idea that
limitations of cognitive capacities can serve adaptive functions, we
disagree with Kareev et al.’s (1997) assertion that limitations in
short-term memory amplify the detection of correlation by forcing
people to rely on small samples. Instead, we think that these
limitations foster simpler predictive behavior, choosing the more
frequent option on every trial (maximizing) because of an incapa-
bility to apply more complex predictive behavior. In this experi-
ment, simple predictive behavior, maximizing, is more successful
than any other more complex predictive behavior, such as pattern
search, when the correlational structure of the task is stable.
However, applying this behavior consistently seems to put people
at a disadvantage if the environment changes.

Not only in the laboratory but also in the real world, it often pays
to explore alternatives, looking for changes and other patterns in
the statistical structure of the environment. Ayton and Fischer
(2004) speculated that the condition of constant probabilities that
maximizing exploits rarely holds outside of psychological labora-
tories and casinos. Furthermore, the cost of missing a nonrandom
sequence could well be higher than the price of detecting patterns
where there are none (Lopes, 1982). Here we modeled what we
take to be systematic exploration with random noise, but even
random noise has been shown to be an effective way to escape
local minima in optimization problems (Kirkpatrick, Gelatt, &
Vecchi, 1983).

We started by testing the small-sample hypothesis, which con-
siders less information to be helpful, and end by noting that noisy
behavior, which can of course be harmful, has the potential to be
beneficial. Like Kareev (2000), we emphasize that it is crucial to
consider the match between a cognitive process and the environ-
ment in which it operates, because what works well in one envi-
ronment may work poorly in another. No single strategy is optimal
per se.
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